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The bond operator theory under the mean-field approximations is employed to investigate coupled spin-1
dimers on a stacked triangular lattice. The quantum phase transitions from the gapped spin liquid state to the
ferromagnetic state or to the 120° three-sublattice antiferromagnetic state are studied with the idea of Bose-
Einstein condensation of related magnons. A quantum phase transition from the spin liquid state to the quin-
tuplet triangularly ordered state is also discussed. With the exchange coupling constants Ji �i=0,1 ,2 ,3�
extracted in connection with Ba3Mn2O8, the magnetization curve, the temperature dependence of heat capaci-
ties, and the H-T �magnetic field–temperature� phase diagram are calculated. These results agree well with the
experiments. The critical exponents near the critical fields Hc1 and Hc3 are calculated as 2 /3. The incommen-
surability is estimated as �=0.02�.
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I. INTRODUCTION

In 1956, Matsubara and Mastuda investigated the super-
fluidity of helium in the framework of a hard-core boson
model by mapping it onto a quantum spin system in an ex-
ternal magnetic field.1 The magnetic field and the magnetic
order in the spin system correspond to the chemical potential
and the off-diagonal long-range order in superfluid helium,
respectively. After that, the idea of the Bose-Einstein conden-
sation �BEC� of magnons was used to analyze the magneti-
zation process of integer Heisenberg antiferromagnetic spin
chains by Affleck2 and of spin ladders by Giamarchi and
Tsvelik.3 In recent years, field-induced long-range order
�LRO� in the plane perpendicular to the external magnetic
field was observed in many gapped spin systems. Among
them, the coupled S= 1

2 dimer systems TlCuCl3 �Ref. 4� and
BaCuSi2O6 �Ref. 5� have been most extensively investigated.
Besides the interesting LRO in the perpendicular plane, a
magnetization plateau, a sharp peak in the temperature–
magnetic field dependence of the specific heat, the phase
diagram in the H �magnetic field�–T �temperature� plane, and
the critical exponent � near the critical magnetic field were
carefully studied. Theoretically, these interesting properties
were attributed to the BEC of magnons and Bose-Einstein
Hartree-Fock theory,6,7 bond operator mean-field theory,8,9

and quantum Monte Carlo simulations,10,11 were employed to
deal with them.

Unlike the spin-1
2 dimer systems, Ba3Mn2O8 is an S=1

spin-dimer antiferromagnet.12–14 The space group of this

compound is trigonal R3̄m. The Mn5+ ions form double-
layered triangular lattices in the basal plane, which are
stacked along the c axis with a periodicity of 3. Measure-
ments of the magnetic susceptibility and the magnetization
process showed that Ba3Mn2O8 has a spin-singlet ground
state with an excitation gap �=12.3 K. The magnetization
curve displays two plateaus at zero and at half of the satura-
tion magnetization. At a given external magnetic field 9.5
�H�25 T, the temperature dependence of the specific heat
shows anomalies, e.g., sharp peaks when 13�H�23 T, two
peaks at H=12 T, and two shoulders at H=24.5 T. A mag-

netic phase diagram is given according to the specific heat
measurements and is interpreted with the idea of Bose-
Einstein condensation of magnons. The critical exponent �
defined by Tc� �H−Hc�� is determined to be �=0.39.

The magnetization process was theoretically analysed by
Uchida et al.13 with a mean-field approximation. Some rela-
tions between the critical magnetic fields and the interaction
parameters were obtained. In this paper, we employ the
bond-operator theory15 to investigate this coupled spin-1
dimer system. We mainly study the temperature- and field-
dependent properties, for example, the phase diagram in the
temperature-field plane, the specific heat, and the critical
properties near the critical magnetic fields. For simplicity, we
put the S=1 dimers on a hexagonal lattice. The model
Hamiltonian reads

H = J0�
r�

S�r�,1 · S�r�,2 +
J1

2 �
r�,	�

�S�r�,1 · S�r�+	� ,2 + S�r�,2 · S�r�−	� ,1�

+
J2

2 �
r�,��

�S�r�,1 · S�r�+�� ,1 + S�r�,2 · S�r�+�� ,2� +
J3

2 �
r�,��

�S�r�,1 · S�r�+�� ,2

+ S�r�,2 · S�r�+�� ,1� − h�
r�

�Sr�,1
z + Sr�,2

z � . �1�

Here, as shown in Fig. 1, �� and 	� denote nearest neigh-
bors; J0 is the exchange interaction between two spins in a
dimer and Ji �i=1,2 ,3� the exchange couplings of two spins
in the nearest-neighbor dimers along the c direction and in
the dimer plane, respectively. An external magnetic field h
=g
BH is applied, with g the Landé factor and 
B the Bohr
magneton. For Ba3Mn2O8, g=1.98. In comparison with the
true geometry of Ba3Mn2O8, J1 can be regarded as an effec-
tive coupling between two double-layered triangular planes
along the c direction. This simplification sounds reasonable
since J0 is much larger than Ji �i=1,2 ,3�.

In the rest of the paper, the bond-operator representation
of a spin-1 dimer is applied to model �1� and the self-
consistent equations are obtained under mean-field approxi-
mations in Section II. By studying the changes of the exci-
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tation gap with Ji, quantum phase transitions from the
gapped spin liquid state to some ordered states are discussed
in Section III. With the physical parameters extracted in re-
lation to Ba3Mn2O8, the magnetization, the thermodynamic
properties, and the phase diagram are studied in Sec. IV. The
effects of the true geometry of Ba3Mn2O8, especially the
incommensurability, are studied in Sec. V. A summary is
given in Sec. VI.

II. BOND-OPERATOR REPRESENTATION AND THE
EFFECTIVE HAMILTONIAN

For an S=1 spin dimer, the spin operators S1 and S2 can
be represented by nine bosonic operators, which correspond
to the nine eigenstates in Hilbert space, i.e., a singlet �s�
=s†�vac�, three triplets �t0,±1�= t0,±1

† �vac�, and five quintuplets
�q0,±1,±2�=q0,±1,±2

† �vac�:16

S1,2
+ = ± � 2

�3
�s†t−1 − t1

†s� +
1
�2

�t0
†q−1 − q0

†t−1� +
1
�6

�t1
†q0

− q1
†t0� + �t−1

† q−2 − q2
†t1�� +

1
�2

�t0
†t−1 + t1

†t0� +
3
�6

�q1
†q0

+ q0
†q−1� + �q2

†q1 + q−1
† q−2� ,

S1,2
− = �S1,2

+ �†,

S1,2
z = ± � 2

�6
�s†t0 + t0

†s� +
1
�3

�t0
†q0 + q0

†t0� +
1

2
�t1

†q1 + q1
†t1

+ t−1
† q−1 + q−1

† t−1�� +
1

2
	nt,1 + nq,1 − nt,−1 − nq,−1 + 2�nq,2

− nq,−2�
 , �2�

where n�,�=��
†�� with �=0, ±1 for �= t and �=0, ±1, ±2 for

�=q. The single-occupancy condition requires ����n�,�+ns
=1. With the states of �t0,±1� replaced by �tx�=−�1 /�2���t1�
+ �t−1��, �ty�= �i /�2���t1�− �t−1��, and �tz�= �t0�, an alternative
expression for the bond-operator representation was given by
Brenig and Becker.17

Substituting the above representation into Hamiltonian �1�
and introducing chemical potentials 
r� to ensure single oc-
cupation at each dimer, we exactly obtain the model Hamil-
tonian in the bond-operator representation. In the singlet,
triplet, and quintuplet states, the dimer has energies of −2J0,
−J0, and J0, respectively. In zero or small magnetic fields, we
can project out the quintuplets for simplicity. The hard-core
condition then becomes ��nt,�+ns=1. We solve this Hamil-
tonian by a mean-field approach.15 Taking �sr��=s, replacing
the local constraint 
r� by a global one 
, and making mean-
field decouplings for the remaining four operator terms with
p�,�� = �tr�,�

† tr�+�� ,��, q�,�� = �tr�,�
† t

r�+�� ,�̄

† �, �=0, ±1, and m= �Sr�,1
z

+Sr�,2
z �= �nt,1−nt,−1�, we get the diagonalized Hamiltonian af-

ter a Fourier-Bogoliubov transformation:

H = Ne0 + �
k�

�
�
��k�,�

†
�k�,� +

1

2
�
k�,�, �3�

where e0 is a constant independent of k�. The excitation spec-
tra are


k�,� = �Ak�
2 − Dk�

2 + �Bk�, � = ± 1,


k�,0 = �Ck�
2 − �2Fk��2, �4�

with

Ak� = 
 +
4

3
s2Jk� +

1

2
	6p0,���J2 + J3��k�,� + p0,	�J1�k�,	
 ,

Bk� = − h +
1

2
mJ ,

Dk� = −
4

3
s2Jk� +

1

2
	6q0,���J2 + J3��k�,� + q0,	�J1�k�,	
 ,

Ck� = 
 +
4

3
s2Jk� +

1

2
	6�p1,�� + p1̄,����J2 + J3��k�,� + �p1,	�

+ p1̄,	��J1�k�,	
 ,

Fk� =
2

3
s2Jk� +

1

2
	6q1,���J2 + J3��k�,� + q1,	�J1�k�,	
 ,

where J=J1+6�J2+J3�, Jk� =6�J2−J3��k�,�−J1�k�,	, �k�,�

= 1
3 cos�kxa�+ 2

3 cos� 1
2kxa�cos� �3

2 kya�, and �k�,	=cos�kzc�. �k�,�
†

=ak�tk�,�
† +bk�t−k�,�̄ with ak� =cosh �k�, bk� =sinh �k� and tanh �k�

=
xk�

2 ±� xk�
2

4 −1. For �= ±1, xk� =
Ak�

Dk�
and for �=0, xk� =

Ck�

Fk�
.

The self-consistent equations are written as

FIG. 1. Simplified geometry for Ba3Mn2O8 with the spin-1
dimers placed on a stacked triangular lattice. The intradimer cou-
pling J0 is much larger than the interdimer interactions Ji �i
=1,2 ,3�.
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s2 =
5

2
−

1

N
�

k�
� Ck�


k�,0
	n�
k�,0� + 1/2


+
Ak�

�
k�,1 + 
k�,1̄�/2 �
��0

�n�
k�,�� +
1

2
�
 ,


 = J0 −
1

N
�

k�
� Ak� + Dk�

�
k�,1 + 
k�,1̄�/2 �
��0

�n�
k�,�� +
1

2
�

+
Ck� − 2Fk�


k�,0
	n�
k�,0� + 1/2

4

3
Jk� ,

m =
1

N
�

k�
�
��0

�n�
k�,�� ,

p�,�� =
1

N
�

k�
� Ak�/2

�
k�,1 + 
k�,1̄�/2 �
��0

�n�
k�,�� +
1

2
�

+
n�
k�,1� − n�
k�,1̄�

2 
�k�,�, � � 0,

p0,�� =
1

N
�

k�

Ck�


k�,0
�n�
k�,0� +

1

2
��k�,�,

q�,�� =
1

N
�

k�

− Dk�/2
�
k�,1 + 
k�,1̄�/2 �

��0
�n�
k�,�� +

1

2
��k�,�,

q0,�� =
1

N
�

k�

− 2Fk�


k�,0
�n�
k�,0� +

1

2
��k�,�, �5�

where �� =�� ,	� and n�x�=1 / �e	x−1� with 	=1 /kBT and kB

the Boltzmann constant.

III. QUANTUM PHASE TRANSITIONS AT ZERO
MAGNETIC FIELD

At zero magnetic field, the magnetization m is
zero. Neglecting p�,�� and q�,�� , we get three degen-
erate excitation spectra with 
k� =�
�
+ 8

3s2Jk��. Recall-
ing that Jk� =6�J2−J3��k�,�−J1�k�,	 with �k�,�= 1

3 cos�kxa�
+ 2

3 cos� 1
2kxa�cos� �3

2 kya� and �k�,	=cos�kzc�, we find that the
lowest excitation �energy gap� is located at a k�c with �kc

� ,�=
− 1

2 and �kc
� ,	=1 for J2−J3�0 and with �kc

� ,�=1 and �kc
� ,	

=1 for J2−J3�0. In the first Brillouin zone, k�c= �± 4�
3 ,0 ,0�

or �± 2�
3 , ± 2�

�3
,0� for J2−J3�0 and k�c= �0,0 ,0� for J2−J3

�0. When the effects of p�,�� and q�,�� are included, the
spectra change little and the energy gap still appears at the
same k�c. However, the degeneracy of the spectra is lifted and
the component 
k�,0 becomes the lowest. This artifact may be
remedied by using the operators of t� ��=x ,y,z� instead of
t0,±1, as suggested by Brenig and Becker.17 As shown by
Gopalan et al.18 in studying the spin ladders, the three triplet

modes are degenerate when the corrections of the four op-
erator terms are included by introducing the mean fields P
= P�= �ti�

† ti+1�� and Q=Q�= �ti�
† ti+1�

† �. Pz and Qz are equiva-
lent to the present p0,�� and q0,�� , respectively. Substituting
tx
†=− 1

�2
�t1

†+ t−1
† � and ty

†= i
�2

�t1
†− t−1

† � into P and Q and compar-
ing with the mean fields p�,�� = �tr�,�

† tr�+�� ,��, q�,�� = �tr�,�
† t

r�+�� ,�̄

† �,
�= ±1, we find that such terms as �tr�,�

† tr�+�� ,�̄� and �tr�,�
† t

r�+�� ,�

† �
are omitted in the p� �q�� terms. The effects of these terms
are tiny since they describe the effects of two-magnon exci-
tations. The difference between 
k�,0 and 
k�,±1 is thus small.
For example, inserting J1=0.01J0, J2−J3=0.05J0, and J3
=0.3J0, we get the degenerate triplet gap as �0=�±1
=0.798J0. When the effects of p and q are included, we have
�±1=0.797J0 and �0=0.787J0. To study the splitting of the
excitation spectra in the magnetic field and the various field-
induced properties, it is more suitable to use the operators of
t0,±1 for the moment. For simplicity, we will neglect p�,�� and
q�,�� in the following calculations since their effects are
small, just as shown in the spin ladder systems.18

In Fig. 2, we show the variations of the energy gap with
J2−J3 in units of J0. For given J1 and J3, the energy gap goes
to zero at a critical �J2−J3�c, denoting a transition from the
gapped spin liquid state to ordered states. These ordered
states can be described by the Bose-Einstein condensation of
the corresponding magnons. For �J2−J3�c�0, the magnons
with k�c= � 4�

3 ,0 ,0� or � 2�
3 , 2�

�3
,0� condense and the so-called

three-sublattice 120° spin structure with different chirality is
induced. For �J2−J3�c�0, Bose-Einstein condensation of
magnons occurs at k�c= �0,0 ,0� and we get a ferromagnetic
state.

Along the line of J2=J3, the excitation spectra are flat in
the kx-ky plane, indicating the specific feature of quantum

FIG. 2. Dependence of the triplet gap on �J2−J3� /J0. The curves
with circles, triangles, and squares correspond to J3 /J0=0.1, 0.2,
and 0.3, respectively, and J1 /J0=0.01. The energy gap is located at
k�c= �4 �

3 ,0 ,0� for J2�J3 �white symbols� and at k�c= �0,0 ,0� for
J2�J3 �black symbols�. When the energy gap vanishes at the criti-
cal �J2−J3�c, long-range order characterized by corresponding k�c

appears.
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phase transitions. For the special case of J2=J3 and J1=0,
Hamiltonian �1� reduces to

H =
J0

2 �
r�

S� r�
2 +

J2

2 �
r�

�
�

S� r� · S� r + �� − 2NJ0, �6�

with S� r�=S�r�,1+S�r�,2, and N the number of dimers. It describes

a system of combined spin S� r� ’s interacting on a triangular
lattice with S=0,1 ,2. When J0 is large enough, the system
will be in the spin liquid state with every dimer in the singlet
state; while when J2 is very large, every dimer prefers to be
in the state with S=2 and the system will be in the three-
sublattice 120° Néel state. So there must exist a quantum
phase transition from the spin liquid state to the Néel state if
there is no other intermediate state�s� between them. Ignor-
ing the possible intermediate state, we can estimate the criti-

cal point by
J0

2 �r��S� r�
2�+

J2

2 �r����S� r� ·S� r + �� �=0. Recalling the re-
sults from the spin wave theory,19 we get J2c= 1

3
S+1
S+c J0. With

c=0.218 412 and S=2, we have J2c=0.4508J0.

IV. MAGNETIC AND THERMODYNAMIC PROPERTIES

We now study the thermodynamic properties of model �1�
in an external magnetic field and the phase diagram in the
H-T plane in connection with the experimental results on
Ba3Mn2O8. As shown in Eqs. �4�, the triplet excitations split
under the applied magnetic field and one component de-
creases with increasing magnetic field. At a critical magnetic
field hc1, the energy gap goes to zero. For any larger mag-
netic field h�hc1, the magnons with momentum kc will con-
dense and induce long-range order in the plane perpendicular
to the magnetic field. With a condensed density n�h ,T�

= 1
N

4s2/3Jk�c
+



k�c,0
��k�,1

†
�k�,1� extracted, the self-consistent equations

become

s2 =
5

2
−

1

N
�

k�

4

3
s2Jk� + 



k�,0
�

�=±1,0
�1

2
+ nk�,�� − n�h,T� ,


 = J0 −
1

N
�

k�

4

3

Jk�


k�,0
�

�=±1,0
�1

2
+ nk�,�� −

4

3

Jkc

�

4

3
s2Jkc

� + 


n�h,T� ,

m =
1

N
�

k�
�

�=±1
�nk�,� +


kc
� ,0

4

3
s2Jkc

� + 


n�h,T� , �7�

with 
kc
� ,1=0. Here, p�,� and q�,� are neglected. The field-

induced magnetization in the perpendicular plane is mx

=�4
3s2
n�h ,T� /�
− 4

3s2	3�J2−J3�+J1
�.
Before proceeding to numerically solve the self-consistent

equations, we need to determine the exchange coupling con-
stants Ji �i=0,1 ,2 ,3� in relation to Ba3Mn2O8. Assuming a
helical incommensurate structure characterized by an angle �

in the basal plane and using the mean-field approximation,
Uchida et al.13 obtained J0=17.4 K and 2�J2+J3�+J1
=8.3 K. Furthermore, the angle � satisfies �J2−J3��4 cos �
+2 cos 2��−J1�2 cos �+1�=−3.7 K. However, two other
conditions are required to determine the individual values of
Ji �i=1,2 ,3�. In our calculations with the simplified geom-
etry, we have �= 2�

3 . Keeping Tc=0.85 K at H=17 T at the
top of the T-H curve,14 we try sets of Ji �i=1,2 ,3� and
extract these parameters as J1 /J0=8.04�10−3, J2 /J0=0.153,
and J3 /J0=8.16�10−2. With these parameters, we calculate
the magnetization, the specific heat, and the phase diagram in
the T-H plane. The effects of the geometry, especially the
incommensurability, will be discussed later.

The magnetization curve at zero temperature is shown in
Fig. 3. The calculated Hc1=9.5 T agrees well with the ex-
perimental 9.2 T. When H�Hc1, the magnetization increases
linearly Hc2, where a magnetization plateau of 1

2ms appears
and all the dimers are in the triplet state of �t1�. To study this
state as well as the magnetization process at higher magnetic
field, we have to consider the quintuplets. Since the two
lowest states are now �t1� and �q2�, we project all the other
states in the bond-operator representation. Taking �t1

†�= �t1�
= t, it is easy to get the diagonalized Hamiltonian as H
=Ne0+�k�nk�,q
k�,q, with e0 a constant independent of k� and

k�,q= t2Jk� +3J0+
−2h+ �t2+2nq�J. The lowest excitation
�the gap� is also located at the same k�c. The new self-
consistent equations are

t2 = 1 − nq�h,T� −
1

N
�

k�
nk�,q,2,


 = − J0 + h −
1

2
t2J − nq�h,T��J + Jkc

� � −
1

N
�

k�
nk�,q,2�J + Jk�� ,

nq,2 = nq�h,T� +
1

N
�

k�
nk�,q,2. �8�

When 
kc
� ,q�0 and nq�h ,T�=0, we get a gapped spin liquid

state and, correspondingly, a 1
2ms magnetization plateau be-

FIG. 3. Dependence of the uniform magnetization on external
magnetic fields at vanishing temperatures.
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tween Hc2 and Hc3. The calculated Hc2=25.7 T and Hc3
=32.5 T, agreeing well with the experimental Hc2=25.9 T
and Hc3=32.3 T. The state with 
kc

� ,q=0 and nq�h ,T��0 de-
scribes the BEC of the quintuplet magnons at k�c at Hc3�H
�Hs. The field-induced magnetization in the perpendicular
plane is mx�=�t2nq�h ,T�. At Hs=47.5 T, all the dimers are in
the state of �q2� and the saturation magnetization is reached.
The experimental Hs=48 T. The two slopes are calculated as
0.0588T−1 at Hc1�H�Hc2 and 0.0664T−1 at Hc3�H�Hs,
which agree well with Uchida et al.’s mean-field results
2g
B / � 4

3a+b�=0.0593T−1 and 2g
B / �a+b�=0.0667T−1.
In the regions of Hc1�H�Hc2 and Hc3�H�Hs, where

Bose-Einstein condensation of magnons occurs, there exists
a critical temperature Tc below which the field-induced trans-
verse magnetization forms the 120° three-sublattice struc-

ture. The critical temperature Tc as a function of H is shown
in Fig. 4. The left part �part I� with Hc1�H�Hc2 is calcu-
lated from Eqs. �7� and the right part �part II� from Eqs. �8�.
Part I agrees well with the experimental curve.14 However,
we do not observe the splits of Hc1 and Hc2 at zero tempera-
ture. Part II has a similar shape to the part I but with lower
Tc. Its experimental counterpart is absent at present because
of the too high magnetic field. Near Hc1 and Hc3, we fit the
results with Tc� �H-Hc�� and get �=0.652 near Hc1 and ��
=0.645 near Hc3, very close to the value 2

3 from the three-
dimensional XY model. The experimental �=0.39 near Hc1
is a little smaller. We believe this discrepancy will be re-
duced or disappear with a more precisely determined Hc1 and
a narrower temperature region. The critical exponent has
been extensively studied through different theoretical meth-
ods such as Bose-Einstein Hartree-Fock theory,6,7 bond-
operator mean-field theory,9 and quantum Monte Carlo
simulations10,11 on different models and the same result of
about 2

3 has been given. Experimentally, although the re-
ported value is discrete in different materials, it also begins
to converge to 2

3 , for example, in TlCuCl3, BaCuSi2O6 and
NiCl2 ·4SC�NH2�2.20

In Figs. 5�a� and 5�b�, we show the decrease of the field-
induced staggered magnetization with increasing tempera-
tures at fixed magnetic field. The magnetization vanishes at
the critical temperature Tc. The results at Hc1�H�Hc2 	Fig.
5�a�
 are from Eqs. �7� and those at Hc3�H�Hs 	Fig. 5�b�

from Eqs. �8�. The magnetic field dependences of the stag-
gered magnetization at zero temperature are presented in Fig.
6.

In Figs. 7�a� and 7�b�, we show the T dependence of the
specific heat at different magnetic fields. At fixed H, a peak
is obtained at the critical temperature Tc. The height and the
location of the peak move up with increasing field when H
� �Hc1+Hc2� /2. These results agree well with the experi-
ments. When H� �Hc1+Hc2� /2, our calculated C�T� curve

FIG. 4. H-T phase diagram of spin-1 dimers on hexagonal dimer
lattices.

FIG. 5. Temperature dependence of the staggered magnetization at different magnetic fields. The magnetic fields are fixed at �a� H
=11 �triangles�, 13 �diamonds�, 16 �squares�, and 19 T �circles� and �b� H=36 �triangles�, 38 �squares�, 40 �circles�, and 43 T �diamonds�.
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also shows peaks with the right locations but incorrect
height. We do not show them here. There is no report of
measurements of specific heat at H�Hc2 at present.

V. FURTHER DISCUSSIONS ON Ba3Mn2O8

With model Hamiltonian �1� as well as the simplified ge-
ometry, we have interpreted the experiments on Ba3Mn2O8
quite well. We now consider the effects of the true lattice
structure of Ba3Mn2O8 with the double-layered triangular
lattices stacked along the c axis with a periodicity of 3.
Correspondingly, we have to replace J, �k�,	, and Jk�

with J�=3J1+6�J2+J3�, �k�,	
� = 2

3 cos� 1
2kxa�cos� 1

2�3
kya+kzc�

+ 1
3 cos�− 1

�3
kya+kzc�, and Jk�

�=6�J2−J3��k�,�−3J1�k�,	
� . When

J2−J3�0 and J1�0, the excitation spectra has an energy

gap located at k�c�= � 4
3�−� ,0 ,0� or � 2

3�−� , 2
�3

� ,− �
3

�. Hence,
the Bose-Einstein condensation of the corresponding mag-
nons will induce an incommensurate long-range order in the
basal plane. The deviation from the 120° configuration along
	1, 0, 0
, or the incommensurability, is determined by �
�J1 /�3�J2−J3�. With the above extracted Ji �i=1,2 ,3�, we
get ��0.02�. An experimentally measured � is needed.

Two peaks �shoulders� were observed in the C�T� curve at
H=12 T �H=24 T� and two Hc1’s and two Hc2’s were sug-
gested in the H-T phase diagram.14 Similar behavior was also
observed in other triangular magnets such as CsFeBr3 �Ref.
21� and CsFeCl3.22 The origin is still in controversy. Consid-
ering the incommensurability discussed above, we guess the
separation of Hc’s is related to the incommensurate-
commensurate transition, which deserves more detailed in-
vestigation, both experimentally and theoretically.

In general, there exist anisotropic terms such as DSz
2 and

E�Sx
2−Sy

2� for S�1 spin systems. In Ba3Mn2O8, the elec-
tronic ground state of the Mn5+ ion with the 3d2 configura-
tion is 3F, which splits into three states of �4, �5, and �2.
The nondegenerate �2 state has the lowest energy and gives
an effective S=1 spin. Experimentally,13 no effect of the E
term was observed and the D term was estimated as D
�0.1�g
B��0.133 K�7.6�10−3J0, much smaller than the
intrabilayer interactions J0, J2, and J3, but comparable to the
interbilayer interaction J1. The inclusion of the D term will
not change our results greatly, since the main features of
Ba3Mn2O8 are determined by the bilayer structure and the
spin exchange interactions inside it. Theoretically, if a con-
siderable D term is considered in the model of Hamiltonian
�1�, the singlet and the quintuplet will mix in the bond-
operator representation.16 The ground state will then have an
important component of quintuplets. The excitation spectra,
and furthermore the quantum phase transitions, will be rich
and interesting.

FIG. 6. Magnetic field dependence of the staggered magnetiza-
tion at zero temperature.

FIG. 7. Temperature dependence of heat capacities at �a� H=9 �circles�, 11 �triangles�, 13 �diamonds�, and 16 T �squares� and �b� H
=32.5 �triangles�, 36 �diamonds�, 38 �squares�, and 40 T �circles�.
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VI. SUMMARY

In summary, we applied the bond-operator theory under
the mean-field approximation to study coupled spin-1 dimers
on stacked triangular lattices and interpreted the experimen-
tal results of Ba3Mn2O8. The quantum phase transitions from
the gapped spin liquid state to some ordered states are dis-
cussed by studying the changes of the energy gap with Ji and
the Bose-Einstein condensation of related magnons. The
transverse component of dimer spins aligns parallel when
J2−J3�0 and in the 120° configuration when J2−J3�0.
While at J2=J3 and J1=0, a quantum phase transition from
the spin liquid state to the triangularly ordered quintuplets is
estimated at J2=0.4508J0 if there is no intermediate state�s�

between them. With the extracted exchange coupling con-
stants J1 /J0=8.04�10−3, J2 /J0=0.153, and J3 /J0=8.16
�10−2, the magnetization curve, the H-T phase diagram, and
the temperature dependence of heat capacities are calculated.
These results agree well with the experimental results on
Ba3Mn2O8. The incommensurability is estimated as �
=0.02�.
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